skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shastri, Bhavin_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The integration of computing with memory is essential for distributed, massively parallel, and adaptive architectures such as neural networks in artificial intelligence (AI). Accelerating AI can be achieved through photonic computing, but it requires nonvolatile photonic memory capable of rapid updates during on-chip training sessions or when new information becomes available during deployment. Phase-change materials (PCMs) are promising for providing compact, nonvolatile optical weighting; however, they face limitations in terms of bit precision, programming speed, and cycling endurance. Here, we propose a novel photonic memory cell that merges nonvolatile photonic weighting using PCMs with high-speed, volatile tuning enabled by an integrated PN junction. Our experiments demonstrate that the same PN modulator, fabricated via a foundry-compatible process, can achieve dual functionality. It supports coarse programmability for setting initial optical weights and facilitates high-speed fine-tuning to adjust these weights dynamically. The result shows a 400-fold increase in volatile tuning speed and a 10,000-fold enhancement in efficiency. This multifunctional photonic memory with volatile and nonvolatile capabilities could significantly advance the performance and versatility of photonic memory cells, providing robust solutions for dynamic computing environments. 
    more » « less
  2. Deep neural networks (DNNs) consist of layers of neurons interconnected by synaptic weights. A high bit-precision in weights is generally required to guarantee high accuracy in many applications. Minimizing error accumulation between layers is also essential when building large-scale networks. Recent demonstrations of photonic neural networks are limited in bit-precision due to cross talk and the high sensitivity of optical components (e.g., resonators). Here, we experimentally demonstrate a record-high precision of 9 bits with a dithering control scheme for photonic synapses. We then numerically simulated the impact with increased synaptic precision on a wireless signal classification application. This work could help realize the potential of photonic neural networks for many practical, real-world tasks. 
    more » « less